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PART ONE
RECOGNITION OF PARTIALLY OCCLUDED 3-DIMENSIONAL OBJECTS

USING INFORMATION FROM CONCAVITIES

I INTRODUCTION

In order to recognize 3-dimensional objects in 2-dimensional scenes a shape
description, complete enough to determine the 3-dimensional object, must be
recovered from the scene. Although it is possible to recover some 3-dimensional
information, for instance shape from shade [21] or shape from texture [13], in
general the information recovered will be a 2-dimensional representation of the
object. Many methods are available for interpreting 3-dimensional objects in 2-
dimensionally arrayed range images (3], [20]; however this is considered as a
somewhat different problem, since depth information can be derived from the scene
with little or no ambiguity. The representation recovered from regular 2dimensional
intensity sceneswill consist of a mapping from an object-centered coordinate space
to a viewer-centered coordinate space [2]. This mapping represents any reorientation
of the 3-dimensional object within its coordinate system which results in a change
with regard to the viewer.

Currently there are two approaches to forming an object description under these
conditions. In the first approach {4], a 3-dimensional representation of all the
objects to be recognized is stored. Then when a 2-dimensional scene is to be
analyzed, the 3-dimensional model is transformed to obtain its 2-dimensional
equivalent. The corresponding 2-dimensional versions are then matched against those
extracted from the scene. The main difficulty with this approach is the amount of
upfront processing required to compute an adequate number of transformations to

required to compute an adequate number of transformations to represent the possible
object views.

In the second approach, the transformed object representations are calculated

a-priori and the corresponding 2-dimensional descriptions stored for the scene




analysis algorithm. Obviously the 2-dimensional descriptions must be compact

enough so that a sufficient number of views can be stored without exceeding memory
restrictions. Fourier descriptors [18],(19], and boundary curvature (26] have been
used to describe 3dimensional objects in this manner however, they are inadequate
when conditions of occlusion and boundary noise respectively are allowed. In this
paper, a method for 3-dimensional object identificationsimilar to the two above but
with much greater immunity to conditions of occlusion and boundary noise is
presented. The method is believed to be applicable in many industrial and military
systems where efficient and reliable identification is necessary.

In section II, the concepts of shape space and shape vector are introduced. The
formalization of these concepts provides a bacis upon which shape contours can be
analyzed, even in the context of incomplete knowledge ( occlusion ). The underlying
structure for constructing the shape vector is the critical point. In section Il a new
method for defining critical points is described, which in many cases offers
improved performance versus those defined on the basis of curvature. In section [V a
procedure for extracting these new critical points from descrete data is presented,
and in section V the corresponding shape identification algorithm or cognitive stage
is described. Finally, in section VI the procedures ability to recognize partially

obscured, complex 3-dimensional objects in 2-dimensional scenes is demonstrated.

11 SHAPE SPACE AND FEATURE VECTORS

In order to distinguish one shape from another, or a partial shape as a part of a
whole shape, some mechanism which examines the relationship between shape
measurements is needed. One such mechanism which is ideal for this application is

a shape space [24]. By introducing a shape space defined on the measurements,

relationships between these measurements can be quantified and thereby compared.




The basic element of shape space is the shape vector IJ.‘Z, where j indicates the jth
set of measurements from the kth shape. If there are K shapes to be analyzed, then k
is integer valued from 1 to K. The range of j depends on the total number of
measurements possible on a given shape k. The shape vector ;(Z consists of a
measurement vector, ;.‘M, normalized by a scalar factor §s referred to as the size

variable. Thus,

k k
AL YA {
“EME

The measurement vector consists of I measurements between predetermined points

on the shape | S, represented notationally by
_(k Kk k k
§M—(jm1’jm2’---,jmi’“-ijml) 2

Combining (1) and (2} yields the final form of the shape vector

Km, *m K km
i™ 2 i i
l-(z = (_’—_) y T ) 3
! ks, K kg ks
il j2 ji il
For notational purposes it is convenient to rewrite (3) as
-k k k k
;‘Z-( 'Zl’jZZ’""jzi"”’sz ) 4

where each ;Zi represents the ith measurement component normalized by the size
variable. When constructing the shape vector two important properties must be

preserved: 1) all measurements are made between a set C of predefined points, 2)
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’
: the shape vector is independent of the size variable. If these conditions are met, then X
. any two shapes which have the same shape vector are said to be equal with respect »
U
to the measurements. :
A
()
:
The Measurement Vector .
The exact nature of the measurement vector is described next. Let each element of ‘
C be r'epresented by the ordered pair cn=(xn,yn), where x, and y_are the spatial ‘
coordinates in RZ. The displacement vector between any critical point ¢ and any ‘
[ ¢
reference point ¢’=(x’,y’) is given as '
:
i
cnfrc’: (xnj—x’,ynfy’) S i
the normal Euclidean definition for displacement in R, The resulting vector yields a '
\
displacement with respect to the origin. With this definition in mind, consider I t
t
arbitrary critical points which constitute the jth measurement vector formed from '
C. Now form a reference point, jC':(J.Y,J.y), by calculating the centroid of the I X
points as N
.z
{1 t1 i
X =— X, 3 y = — 6 4
e 1 1‘2‘1“ P T &1 :
\
s

Then form the components of the measurement vector by calculating the displacement
between each critical point and the feature centroid. Mathematically this is given by ::
1
- = = . i 1y
™ = ( Fi e i e )3 i=ltol. 7 i
n\
)
2 '
This in effect translates all measurements to the origin of R, in other words, the A
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measurement vector is an I-tuple of vectors originating from the origin of RZ. The

relationships described by (6) and (7) are demostrated graphically in figure 1.
Rotation, Translation and the Measurement Vector

It is a desirable goal to remove the effects of rotation, translation and scaling
from the shape representation or to at least account for them. An examination of
these effects for the first two transformations on the measurement vector is now
discussed (the effects of scaling are closely related to the definition of the size
variable and will be described later).

Since the rotation R, of the shape by an angle 6 is linear [10], the rotation of the
arbitrary set {ci, Cy C3p ev s cI} by an angle 6 about the origin results in a

rotation of the m.’s about the origin plus a displacement to the centroid of the

rotated feature. This can be shown mathematically as

w = fa{ o} = kol me oh = ol mbera{) ¢

where the latter two rotations are about the origin. The latter displacement term in
(8) will be factored out by the subtraction in (7). Thus the angle of rotation between
the rotated measurement vector and the original measurement vector can be

calculated for any component i as

cos

J.G = SIGN (6)

where (e,¢) is the standard inner product and | |e|} 1s the standard norm for vectors
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: in R® From this it can be seen that the only difference between measurement ,:f
vectors from the rotated set of critical points and the unrotated set is a rotation 8 '.
. g
about the origin. .s
Similarly, a translation T, of the set {Cl’ cZ, Cqy e cI} by a vector ¢, can be ::
written as e
o
9 h
.c.:T{.c.}zT{.m.+.E}= m. + ct+c 10 )
1 1 J1 it :
X
However, £tey is just a new centroid which will be factored out in (7) leaving only \‘
4
the original mi’s. Therefore, translation has no effect on the measurement vector. ?f
. "
The Size Variable and the Effects of Scaling o
- K]
N
The second condition required for the formulation of the shape vector is that the E
N]
shape vector must be independent of the size variable. This can be achieved by "'
b
making the size variable a function of the measurement vector. One such fuction can W
be formulated as ,:;
,
- :
3
S = .m, {1 ,
PR -
\J
ot
B
This formulation can be interpretted as the spatial energy contaired in the ::j
)
measurement vector. With this value as the size variable the sum of all spatial o
energy in any shape vector always equals 1. :‘;
] As a result, the effects of scale change can be removed. As an example, consider :;i'
‘q.
the previously mentioned set of arbitrary points. If they are scaled by a factor a, '
their measurement vector will become "
13
"
{
i,
6 |
Y
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J.M’ = <;rjm1 , a'J.m2 , ch.m3 , ch.m4 , aJ.mS , ch.m6 ) 12
‘which has total energy given by
[
£ = Nl 3 11 m 3

This is equivalent to the size variable for jM multiplied by a. When the
corresponding shape (feature) vector is calculated the scale factor a will be canceled

by the size variable.

GENERALIZED DESCRIPTION FOR IRREGULAR 2-DIMENSIONAL SHAPES

Since initially only 2-dimensional shapes are considered the domain for a shape,
called S, is restricted toR_Z. The shape S consists of a bounded, simple, closed
curve B [22] and the area enclosed by this curve, called the interior I. In other
words, S=BNI. The shape description will consist of a finite set of measurements
extracted from S. These measurements will be made between a set of points C,
which are referred to as critical points. The set of critical points is a subset of B.
In order to define this set C, another structure called a concavity tree must first be
described.

According to Sklansky [24], the concavity tree is a structure for describing
simply connected silhouettes. If the shape S is convex , then the concavity tree is
trivially the shape S itself. In this work, it is assumed that the shape is non-convex,
this will be the case in most applications where irregular objects are to be

processed. The concavity tree is described for the shape S by the following

o T, oy

L

LSS

~’..~

XX

o

o )

P ||




procedure.
1) Compute the convex hull of the shape S, called S°. This is defined operationally
by
$"=C.(S). 14
The convex hull is the smallest convex set which contains S.
W 2) Subtract the original shape S from its convex hull S°. This is equivalent to
: finding the intersection of SC with the complement of S (S). The set formed by
SNS is most likely a disconnected subset of S, Consider each connected element of
o this subset as a branch of the concavity tree (subshape). Denote each branch by Si’
. which indicates the ith component of SNS. Each S; will have the same properties as
s :
3) To find the next level of the concavity tree, replace S by S, and S; by Sij'
Repeat the above procedure for each level | branch of the concavity tree. The index j
‘ will denote the branches of the concavity tree at level 2.
é 4) To complete the concavity tree, continue with the above procedure progressing
: from {Si} to {Sij} to {Sijk} ect. until all residual subshapes from the second step are

...} for all i,j.k,... forms the concavity

: convex. The set of shapes {Si, Sij’ Sijk’

R tree. Figure 2 shows an arbitrary shape S and its resulting concavity tree.

) .

o Since the concavity tree is based on the relationship between a shape (subshape)

and its convex hull there is only one unique tree for each shape (subshape). However
it is possible for this tree to have a countably infinite num*ar of levels and an

uncountable infinite number of branches, for example see Koch curves [65]. In this

N work the class of shapes examined will be resticted to those which are sufficiently
8 . smooth as to have only a finite number of levels and branches, and thereby a finite

number of critical points. This restiction still includes all shapes found in real
. applications and all but the most abstract found in any application.

Now that the concavity tree has been described, the definition for the critical

8
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. points can be considered. Let the set C represent the critical points for a shape S and '
W(e) the operation which yields C from S, g
+
v
;
C=¥(S). 15 !
\J
The set C is equivalent to the wunion of all critical points extracted from all ;
branches of the concavity tree of S, i.e., :
\l
= U C 16 .E
all levels 1
n |
wher‘e, N :
:
]
“
'
C,= U ¥(5), :
all branches
i \
)
C,= U ¥(S.), o
Z all branches ¥
] :
Ch= U ¥(S.), N
37 llbranches ¢ ;’;
.1
k v
etc... 17 -
X
)
.\
The operation ¥(e) for any shape (subshape) must now be described. Consider any :

branch of the concavity tree (Sijk ) and find its intersection with the boundary B, so
that

G

Bk BN S 18 ]

\

\J

This intersection defines a line segment for each branch of the concavity tree. The \
9 v
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collection of all such line segments formed at each level of the tree is the basis for
the critical point sets Cn. The critical points are finally defined as the endpoints of

the Bijk 's. Figure 3 illustrates the boundary segments and critical points for the

K first level concavities of the shape in figure 2. Finally, the operation ¥(e) can be
» summed up by the following hierachy of point set relationships.
A
K
K C=¥(S),
f = U Cn,
W all levels
o n
‘: = U v ¥ (S.. ‘h
all levels t all branches ijk...m J
2 n m ¢
¢ : = U { U { endpoints [ B; . ]}}
B all levels * all branches ijk...m
’ n m
t = U U endpoints [BN S, . 1 . 19
:f all levels{ all branches{ ijk...m }}
R n m
¢
‘.’,5
,‘ These relationships, between all allowable shapes S with their boundaries and
2.; their concavity trees, are unique and well defined. Therefore, the relationships
< between any shape S and its corresponding critical point set C are also unique and
) well defined.
o
h Although these relationships are unique and well defined, their exists two special
P
X cases which can lead to some ambiguity if not handled properly. The first case
7: occurs when two branches from the same level of the concavity tree, Sij mn and
o
E . Sij...mn” have the following property:
:: Sij...mn N Si_j...mn’ = a single point 20
.
i 10
) SR O OO Y S O S T i et e it "'h“ '.' ‘0. Yt A ‘ ' 2 Y




. but the intersection of the open sets formed by Sij... m” Sij...m’ is empty. When

this happens the subsecuent boundary segments associated with the two branches of
the concavity tree, Sij... mn 2 Sij...mn , will in fact be a single line segment. To
remove any ambiguity, the single point described in (20) will be used to partition

this line segment into two seperate ones. This single point will be called “critical"

5 and will be considered as two seperate points, each with singular associations to

“‘ Si jeeerOD and Si j...mn’ respectively.

5 The second case is similar to the first except involves an overlapping of critical

‘:‘,' points from different levels of the concavity tree. In other words, the sets Cn are not

,: mutwally exclusive. This will not be a problem as long as the membership

e information within the Cn’s is retained along with spatial information in RZ.
,;: Consequently, the location of critical points within R? and the knowledge of the

?-E’ ‘ levels and branches of the concavity tree from which they originated are of equal

" importance.

As a rule of thumb, each branch of the concavity tree will generate two critical

points. Each of these critical points can be represented by a triplet (x,y,l}, where x

';f.i and y represent the location of the points in R2 and | indicates the level of the
‘.:i: concavity tree at which the points were generated; x and y are real valued numbers; |
v is integer valued.

i‘:;

l"'

::;; Since initially, only shapes which are invariant in R% are allowed three

transformations must be considered. The three transformations - scaling, rotation

and translation - are all well known mappings from R2 to RZ, and are represented

i ) symbolically by S_(S), Rg(S) and 7(S) respectively. They are defined
mathematically in the following. The functions S_(S), R(S), T(S) map a shape S
1
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into a shape S’ such that all points (x,y), elements of S are mapped to points in S’

by
5, {tn} = tax, ) = 00, ), 21
R6 {(x,y)}-—-(xcose-ysine,xsin6+ycose): (x,y), 22

T{(><,y)}:(x+xt,y+yt =(x,y), 23
where 0, 8, x, y, € R, () €SCR?, (ey) €5 CRZ.
If a is restricted to being positive and finite, 8 to being greater than zero and less
than two pi, and X ¥y to being finite, then all three mappings are not only onto but
one-to-one [10].
Using the definitions for the transforms of scale, rotation and translation the
following theorem can be formulated.
Theorem: the set of critical points C obtained for an arbitrary shape S which has
undergone one of the transformations Sq, R6 or T is identical to the set of critical
points for the untransformed shape, subjected to the same transform. This can be

stated mathematically as:
W(S, (SN=5,(¥(3),
V(R (SN =Ry (¥ (5],
V(T(SH=T(¥(S). 24

The proof of this theorem appears in the appendix.
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In general compositions of SQ(O), RG(') and T{e) are not commutative because of
the nonlinearity of T(e); therefore their order must be preserved. However,

combinations involving only Sa{o) and Re(-) are commutative [10].

The next question to be addressed involves the invariance of critic.! point
determination when only partial shape information is available. this problem can be
divided into two simpler and similar type problems, namely, truncated shape
representation and composite shape representation. In the first case, it is desirable
to determine a source shape S from a given shape S’ where S’CS and B'B=@. In the
second case, it is desirable to determine two or more source shapes iS from S’
where S'= U .S and B’,B=9 for all i.

In orderéltl.o1 accomplish either of the above task it is necessary for a subset of
critical points from each source shape to remain unaltered in S’. Since the critical
points are fundamentally linked to the concavity tree of the source shape, this is
equivalent to requiring that a portion of the concavity tree remain unaltered.

In the case of truncation, ihe portion of the concavity tree which is distorted can
be identified by examining the convex hulls of the whole and partial shapes, or S and
S* respectively. Those subshapes or branches of the concavity tree which do not
intersect a portion of (SC-SC’) remain unaltered. An example of this relationship is
illustrated in figure 4 for an arbitrary shape S and subshape S’. From this it can
be seen that each branch of the concavity tree acts as a generating node for all
subsequent branches in that portion of the tree. Any node which remains unaltered
will generate sub-level branches identical to those of the original tree. A comparison

between the branches of the original shape S from figure 4 and its corresponding

truncated shape S’ is shown in figure 5. The branches inscribed by squares are
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identical in both trees. .
In the case of composite shapes, the effects are more complicated. Not only are -
branches of the original tree truncated, but new branches may be created and others ':
augmented. This occurs because {) the union of the convex hulls of the combihig ?‘
shape is not necessarily convex, thereby creating new concavities and 2) concavities '
from one shape may overlay interior areas of another. These possibilities are '.:
illustrated in figure 6 for a composition of the shape used previously in figure .j'
4. b
’

In general any branch of the concavity tree which intersects a portion of the j
overlap region or intersects a concavity which includes the difference between SC, ¢:
and ltl)' iSc will be distorted. In certain cases it is possible for certain branches, a N
SLbsaet 1of the distorted portion of the tree, to remain unaltered. However the ?:
conditions under which this occurs are complex and specific to the particular shape. ’
In the next section, the gap between the theoretical shape description developed in {:
the previous section and a discrete implementation for digitized shapes is bridged. :
The effects of finite boundary representation, quantization noise and additive ":
observation noise are also considered. ;;
v

111 CRITICAL POINTS FROM REAL DATA i

The definition of critical points advanced in the previous section can be restated as ,‘;
follows: critical points are the endpoints of the line segments formed by the I-‘!
intersection of a shape’s boundary B with the branches (subshapes) of its concavity '::_
tree. If the shape boundary is continuous and can be observed without error, then g}
these critical points can be exactly determined for all combinations of scaling, :
rotation and translation. However, in the discrete case the shape is usually ::
represented by a finite, integer-valued sequence. This sequence is almost always in ::.
\

L
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the form of a chain code or a thinned boundary code [12]. In this work it is assumed

L

that the sampled boundary has been properly preprocessed so that it meets the
discrete definitions of being closed and single-comnected. These definitions are
described in [22] along with various techniques for processing images which
guarantee that these conditions are met.

With these requirements in mind, let the processed shape be represented by the
sequence {xi,yi}irii, which corresponds to the quantized estimate of the shape
boundary. The coordinates of the sequence, x; and y,, should be eight-connected and

integer-valued. Because only boundary information is available the previous definition

[P = —r—

for critical points will have to be reinterpreted.

The general procedure for extracting critical points is illustrated by the flow chart

in figure 7. At the front end-of the system is a spatial filter which is chosen to

Pt —a—_x_9

minimize the effects of the quantization and observation noises. At the next stage,
the convex hull information about the shape is obtained. A decision process is then

required to identify and confirm critical points. Depending on the output of the

e .

decision stage, the shape is either segmented into the next level of branches of its
concavity tree or the procedure is terminated. This procedure is recursive, with each

pass around the loop corresponding to the processing of one level of the concavity

W e T - -

tree. b
The purpose of the spatial filter is to reduce the effects of the quantization noise .
and the additive noise in the boundary sequence. The type of filter chosen should be ]

optimized for the statistics of the noise processes and the source shapes []. '
In general these statistics depend on the imaging equipment and the set of source

shapes, and cannot be determined globally. In fact, they are most likely nonstationary

. T e o

random processes. On the other hand, if the filter is made robust, good results can

still be obtained. Therefore, an averaging filter is chosen.

The output of the filter will be a real-valued sequence {xa,ya}N (» With the same

1=
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number of elements as the input sequence. By increasing the length of the filter
window the effects of the noise can be made arbitrarily small. However, the
smoothing effects may cause smaller features of the shape to be eliminated. In many
cases, this may be considered advantageous because a simultaneous reduction in
feature processing and increased noise immunity is obtained.

The next step is to find those points from the sequence [xa,ya}?_l__i which are
elements of the boundary of the convex hull of the digitized version of S. This
boundary is equivalent to the Minimum Perimeter Convex Polygon (MPCP) enclosing
S. It can be calculated using a modified version of the routine described by Freeman
and Shapira [7). This modified version is adapted to process real data instead of
integer data. It requires a longer running time but still iterates to a final solution in
all cases. The actual convex hull is not required, only the perpendicular distance
from each point of the shape boundary to the MCPC. This distance is referred to as

the difference sequence (d.l}it\i T

Ry g

The procedure for determining thg critical points from the difference sequence is
now described. As a first step, an interpretation of the definition of critical points
must be applied in the context of the difference sequence. Since the difference
sequence measures the distance between the boundary of S and the boundary of S°, it
can be used to find the intersection defined in (18). This intersection for the
discrete case corresponds to those points of {d.l}.f\_j { Which equal zero. The endpoints
(critical points) of the associated line segments are just those points where the
difference sequence goes from a zero value to a nonzero value. If the shape boundary
is observable without error, then the critical points can be determined exactly;

however, this is not the case when applied to any discrete data. Therefore, the




critical points will be determined by finding certain transition regions in the
difference sequence. This will compensate for most of the errors due to observation
noise as well as errors incured by the resampling of shapes which have undergone
one or more of the transformations discussed previously. Of these t -ee, only the
transformation of scale seriously effects the difference sequence (the maximum
error resulting from the other two transformations is limited to 2/V2 times the
quantization grid size}. Since the spatial energy contained in the shape is directly
proportional to the area of the quantization grid which it covers, any reduction in
scale by a factor a results in a simultaneous reduction in signal to noise ratio of o4
Because of this, certain compromises must be made in the performance of the
critical point extraction algorithm, specifically, it will be designed to operate overa <
limited range of scale factors. To be more precise, the resulting procedure tries to

predict the behavior of the critical points over the design range of scale factors. This

reduces to a more basic problem of distinguishing concavities formed by the noise

processes from those concavities due to the shape structure. The exact procedure for
this is described next.

The input shape for extracting critical points for the shape dictionary is evaluated

'~ at a equal to one (the maximum scale factor). This corresponds to the highest signal

to noise ratio expected for the shape. The first step is to isolate a set of potential

-

v
¥

critical points. This is accomplished by comparing the difference sequence to a

532
-
-~ - T

threshold, t,. When the absolute value of the difference sequence is greater than t,
a concavity is formed. The points inside the interval [O,ri] closest to the position

where the t, threshold is crossed are considered as potential critical points and

added to the critical point list. These points are in direct correspondence with the

A m T e | T

endpoints of the line segments in (18). They determine certain subsequences of

3

{di}N1 called concavity sequences. The concavity sequences {d‘;} are the sequential

1=

Sy

portions of {d.l}g\l:1 which are graater than r. Associated with each concavity

-
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sequence are a pair of critical points, one at each end. The first threshold simply
identifies possible critical points. A second threshold is used to evaluate the most
probable underlying cause of a concavity.

The second threshold t., which is greater than ti,is used to eliminate critical
points associated with small concavitities from the list. It also helps remove most
concavities which are formed strictly from observation noise. For each sequence of

points within a concavity, (d‘i:}, the maximum absolute value for the df’s are found.

If this value, called d; 2 is less than T then the critical points associated with
the concavity in question are eliminated from the critical points list. Since it is
impossible to distinguish small shape concavities from those produced by noise with
just one sample, the alternative is to eliminate them all. The reasoning being that
the total number of shape concavities eliminated will be small compared to the
number of noise produced concavities. This can be justified theoretically by assuming
that the average maximum depth of the actual shape concavities is much greater than
the maximum depth of the noise concavities. This is illustrated in figure 8 for a
generalized representative shape. This type of decision is analogous to the classical
maximum-likelihood decision criteria [16]. Note that the depth of the true
concavities can be considered as the signal energy, and the depth of the noise related
concavities as the noise energy. From figure 8 it can be seen that for appropriate
thresholds ] and T most of the effects of the noise can be eliminated, provided the
signal to noise ratio is sufficient. The matching algorithm, to be described later in
this chapter, is designed to be very tolerant of missed critical points as long as they
are listed in the dictionary. However, it is susceptible to error if unexpected critical
points are found in the problem text. Therefore, the threshold r, is biased by an
amownt 7, when the shape dictionary is being prepared. The direction of the bias is

in the direction of higher false alarm rates for concavities due to noise.

Now that the majority of potential critical points have been isolated, it is
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necessary to find a method of predicting their behavior in the problem text aver the
design range of scale factors. The effects of changes in @ on the [d(.f}’s falls into two
categories: {) concavities found at the maximum value of @ may collapse below the
T, threshold and their associated critical points eliminated from the problem text;
2) segments of the difference sequence, which are outside the interval [O,rZ] for
large a, may cross the 1) threshold and create new critical points. Of these two
possibilities, the first case has been observed to happen most frequently. This can
be explained as follows. Because the depth of a concavity is determined from two
extremal points of opposite direction, namely, the outer most points on the shape
boundary contained in the convex hull and the inner most shape points corresponding
to the maximum depth of a concavity, the smoothing effect of the spatial filter

converges these two points approximately twice as fast as distances based on only

one of the extremal points, i.e. case two.

In order to predict the occurrence of these two changes, two additional thresholds
are introduced. Their purpose is to assign a measure to regions of the difference
sequence which may cause one of the above changes. This measure, called the
confidence number, will be assigned individually to each critical point in the shape
dictionary. The confidence numt«r indicates the percentage of the scale factor range
in which a particular critical point is detectable as well as the order in which it
enters (or leaves) the problem text.

The first of these two thresholds, 4, is used to identify candidate critical points
which may be detected in the problem text for smaller values of a. If any sequential

rtion of {d} for any concavity has the property that
po i P
ry < [d] € 1 25

for all diC in that growp, then a potential critical point is indicated. The two points
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where the sequence {df} indicated by (25) crosses into the interval [rz,r 3] are added

to the shape dictionary and assigned a confidence number, # , given by

\ o

g 4 = 13- dhin |_ 2%

| © l - 13 I

R
o where dr?ﬂn is the minimum absolute value of the difference sequence in region
a0

: '. [rz,r3]. An example of this situation is illustrated in part a of figure 9.

The second new threshold, Ty is used to measure the proportion of scale factors

A
“2 at which a particular concavity, and its associated critical points, can be detected.
o

K For each concavity sequence with dfnax greater than ., assign a confidence number
2 according to the following: ‘
™
tl;‘

. c -

if dmax> Ty then #C = |

1dS -, |

e else #C - lmax 2 27
14 - 73]

i;i;: This situation is illustrated in part b of figure 9. Note that 1, is generally twice
i
“';E as large as vy and that 73 ) 1, ) 7.

. At this point the algorithm for extracting critical points and assignment of
"' confidence numbers for a single level of the concavity tree has been described. To
'f; extend the procedure to the rest of the concavity tree, the recursive nature of the
4 algorithm must be defined. Since the concavity sequences correspond to the next level
::'1’ of concavity tree branches, they can be processed individually in the same manner as
' the original shape. The only modification required is the reversal of the value for
= s in (9) at each new level. New critical points are added to the shape dictionary as
ny

R previously described. Confidence numbers are assigned using the same criteria as
T:: before with the following exception: concavities which have confidence numbers less

20
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than 1, have all sublevel critical points assigned a confidence number caiculated as a

product of the current level confidence numbers with the values determined according

to (26) and (27). The process is propogated through the concavity tree until no new

points are found. Figure 10 and {1 show the difference sequence and critical points
‘ respectively from an arbitrary shape for levels 1, 2 and 3 of the concavity tree
respectively.The resulting dictionary page contains the following information
extracted sequentially from the shape boundary for each critical point: 1) its x and y
. coordinate values, 2) its confidence number, 3) the level of the concavity tree at

: which it was found.

Shape Dictionary Calculation for 3-Dimensional Objects

L e . e

Consider an arbitrary, rigid object as shown in figure 12, where 0. Gy and 6
describe angles of rotation in the three axes of the rectangular, object-centered
coordinate system. The z-axis of the object-centered coordinate system is restricted

to parallel alignments with the z'-axis of the viewer-centered coordinate syster-.

5 This restriction results in the following interpretations for motion attributed to the
: object. Tie imaging plane shown in figure 12 is the space in which the object is
. projected

1) Translation of the object ( or the object-centered coordinate system ) with
respect to the z’-axis results in a scale change in the imaging plane.
2) Translation of the object ( or object-centered coordinate system ) along either
o or both of the x and y’ axes results in a translation in the imaging plane.
3) Rotation of the object by an angle 6, about the z-axis of the object-centered
coordinate system results in a rotation by angle 62 in the imaging plare.
4) Rotation by the angles 6x and Gy in the x and y axis of the object-centered

f’ coordinate system results in a new projection of the 3-dimensional object in
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the imaging plane

The first three transformations are the same transformations which have teen shown
not to effect the critical point/feature vector formation procedure. Therefore, only
the fourth transformation will necessitate a modification in the procedure
previously described for 2-dimensional shape recognition.

The necessary modifications will result in an expanded shape dictionary. Now
instead of one set of critical points for each shape, there will be several sets; each '
representing a different rotation about object-centered axes x and y. Therefore the

following procedure is suggested for assembling the 3-dimensional shape dictionary.

1) With the object at its minimum distance from the z’ plane (maximum scale
factor) obtain a projection of the object in the viewer imaging plane with 8 and Gy
at zero degrees. h
2) Next, obtain the outer contour of the projected shape and extract its critical
points using the procedure detailed earlier. Store as the first dictionary page
for this shape.
3) Increment 6 by einc (a divispr‘ of 180o ) énd repeat steps 2 and 3 to obtain !
the next page in the dictionary for this shape. Continue incrementing 8 wntil a
rotation of 180o has been reached.
4) Reset 6 and increment Gy by einc' Keeping Gy fixed at the new value, repeat

0
steps | thru 3 until Gy has been incremented to 180 .

0 2

The shape dictionary will now contain ( 180 / 6inc } views of the 3-dimensional
0 0

object. The other views ( for 9, and Gy between 180 and 360 ) are mirror images

of those already calculated, and may be extracted from the existing dictionary by

processing the critical points in reverse order.
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The choice of e'mc directly effects the accuracy and completeness with which the

3-dimensional object is described as well as the amount of memory needed ’as 7, _
is reduced the accuracy of the description is increased along with the amount of
memory required to store the dictionary ). With regard to the accuracy of the 2-
dimensional shape description, an unintended but benificial side effect is obtained
from the extraction of the critical point’s using the concavity tree. As the 3-
dimensional object is rotated, various sections of the object become visible. The
projections to these sections onto the imaging plane manifest themselves as new
concavities in the corresponding 2-dimensional silhouette. Depending on the direction
of rotation, these new concavities are either entering or leaving the concavity tree.
Since this is the essence of the information measured by the confidence number,

additional accuracy is gained. This is especially useful when the actual angle of

rotation for the problem text is not a multiple of 6, .

2P 2P L K
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e

=
Critical Point Determination for the Problem Text :
.
When the boundary of an unknown shape is obtained a critical point list (problem &
text) must be configured for it. The procedure by which this is done is quite similar A
to the one described in the previous section; however, no confidence number is .'
calculated. This is due to the fact that an exact value of the scale factor a is X
unknown. As a consequence only those portions of the difference sequence partitioned -
by the thresholds t, and T, are used to determine concavities. These concavities Al
may be formed in three ways which are illustrated in figure 13, parts a, b and c. In ;
the first case the v, and t,, thresholds are both crossed in forming a concavity; for \
this case, the critical points for this concavity are chosen as the points nearest to
threshold ] inside the interval [0,t 1]. In the second case only the T threshold is :
crossed; therefore, the nearest points to T inside the interval [O,rz} are chosen as .::
! 't
23 e
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critical. In the last case, only threshold T is crossed; therefore, no critical points
are chosen since the concavity is considered too small to register. As a final result
the problem text contains the following information extracted sequentially from the
unknown shape’s boundary for each critical point: 1) its x and y coordinate values, 2)

the level of the concavity tree at which it was detected.

U

3—}’

A IV COGNITIVE STAGE

!

N, Once a problem text has been defined it must be matched against all the dictionary
i)

.??‘, pages (shapes). Since the algorithm is required to recognize partial shapes as a part
,'; of a larger shape, features must be formed and matched accordingly. The basis for ¢
At

:.:‘ comparison is the shape or feature vector described previously. It consists of
W

o measurements made from [ arbitrary critical points selected from the shape
N - dictionary or problem text. As a first step, the process by which each feature vector
&)

i : . -

\:: is selected must be made non-arbitrary. Four general conditions are suggested for
ty

Y

R choosing the individual critical points; they are as follows:

)

ta

w 1) The set of all feature vectors should give near equal representation to

X :

& all parts of the shape.

-., 2) The total number of feature vectors is kept as small as possible.

1

2

‘.: 3) Each feature vector represents a feature likely to appear under certain

N

W

& conditions of translation, scale or rotation.

i‘s 4) Each feature represents a localized characteristic of the shape.

x"‘i‘

0

K8

% The conditons for the representative feature set can be met by combining the
! .

a::' concavity tree information with the confidence number information contained in the
1

)

", shape dictionary. The procedure for this is as follows. Let each pair of critical
"

3: 24
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points associated with a given concavity act as seed points for a festure vecter.

Choose the two most reliable neighboring critical points to each side of the seed
points to complete the sixtuple. This method guarantees at least one feature vector
for each branch of the concavity tree. Furthermore, it restricts each feature to three
adjacent concavities for a given scale factor. Finally, a linear growth rate is
achieved - if there are N critical points then there will be N/2 feafure vectors. The
method for selecting the most reliable, neighboring critical points is described next.
Recall that the confidence number not only indicates the percentage of scale factors
for which a critical point is detectable but also the order in which they are detected.
For example, if #a and #b‘ represent the confidence numbers for two critical point
pairs - a and b respectively, and # > #; then if pair b is detected, pair a should
also be detected. Therefore, for a given critical point pair with confidence number
#, choose the two nearest neighboring critical points which have confidence numbers
greater than or equal to #.. When considering the problem text, information
concerning scaling is unavailable; therefore, the simplest scheme possible is

derived, i.e, each consecutive grouping of six critical points forms a feature vector.

%

m

Let the feature vectors from the shape dictionary be denoted by _Z where k
indicates the page of the dictionary and m the mth feature vector within page k.
Similarly dencte the nth feature vector of the problem text by :Z.

Step 1) Associated with each feature vector of the dictionary and the problem text
is a sixtuple called the level code vector. Each component of the level code vector is
integer valued and indicates the level of the concavity tree at which the corresponding
critical point was detected. The symbol for the level code vector associated with
dr:Z (an) is dl::l ( :l). For feature vectors to match it is necessary

that their level code vectors also match. Therefore, in the first stage of the

feature vector

procedure all of the level code vectors from the shape dictionary page and the

problem text are cross matched. The distance defined by
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is the basis for each level code vector comparison. A value of zero for dl(m,n) is a :::
necessary condition for two feature vectors to match. This distance is calculated for I
8
all méM, and all réN. This cross referenced set is referred to as NXM, . Each pair ‘:’,
(m,n) such that dl(m,n):O, is added to the reduced feature set called NXM;(. Since g:
dy(m,n) requires only (2*I-1) integer operations, compared to (21*1-2) real valued "
operations for a complete feature vector comparison, computational overhead is b
)
significantly reduced. “;
Step 2) For each pair of features associated with the elements of the reduced set  « 4
NXM;( calculate a pair of feature vectors using the definitions methods outlined in “
chapter II1. Next evaluate the distance d, (m,n) defined by o
=g ":;
8 !
N
for each component of the feature vector pair. In the noiseless case the distance :
d;(m,n) is zero for all components of the feature vectors m and n if they match. :
: o
Since this is never the case a finite positive distance T, must be allowed when ?'
evaluating (29). Therefore, if di(m,n)<rm for i = 1 to I, then the feature vectors :
are said to match. The set of matching feature vector pairs from this stage form the »
l"
new set NXM. It should be mentiored at this point that a zero value for all '
. ~"
components i with respect to the distance d,(m,n} is not a sufficient condition for a 6§ !
match, since only the magnitude information from each component is considered in :
(29). On the other hand the angle information is examined in the next phase of the i
3
algorithm and errors rarely occur due to this in the final evaluation. aﬁ
h
Step 3) Encoded within each group of matching feature vectors is information about :::
26 3
N
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the scale and rotation parameters of the problem text, a and € respectively. If a :j
noiseless case is assumed, then the a parameter is equal to the ratio of the two size x
\
variables and the 6 parameter is equal to the angle between the fealure vecters. ::
N}
Since perfect knowledge of the feature vectors is never obtained the values of « and ':;
6 can only be estimated. The equations for the estimates of «a (:1) and 6 (6) are ;‘
W
given by (30) and (31) respectively. y
: o
Onn = 2 1z lle8
mn & m i 1
Wf’EI‘E %
"
4 P :
-1 ( m%i * nfi ) A

6, = cos 4 } 30 E
Xz 111z 1] ;
£,
and "
P %
- nS j.
= 3t oh
m,n e
dk y
mS -
!
(]
These estimates are obtained for each pair of matching feature vectors in the set ‘:
NXM. Note that the estimate in 30 is weighted by the magnitude of the individual ‘
comporents so that large errors in small compenents do not overly bias the estimate. ;{
Ut
Step 4) By this point there are only a few possible matches remaining, the ::j
‘!
problem now is to pick the best match of the remaining few, or to reject all of them :

if they are false matches. Since feature vectors from the same shape should all have
the same scale factor and angle of rotation, clusters in the estimates of a and 8 3
i

should be formed. The following procedure is used to define such a cluster. Let p be
b
the index on set NXM”* with values from | to nm and form the vectors | <x1 yeens aD :
- - ' ~

yorey anm ]T and [ 61 yeoes 9p yerey enm ]T from the estimates in step 3. Now

27 k.

_—— - L AT L Y AR e AP
B S Lt Ot LA A O O AN A T Co L4, T ORIy S I Cupn O L0 o i o Wyl




calculate the two circulant difference matrices T, and Ty and normalize them &y T,

and 1 so that
a - a a -a
T = a -a 32
a . . P P . .
a_-a -
" nm i nm nm
Ta

_ and
]

9,-6 | 9, - enm

. Ty = 6 -0 33 )
S, T e
‘;-"; am 1 nm onm
“,"‘:

'

| i
P
:: The values T, and T represent the maximum allowable intra-cluster distances for
the estimates of parameters a and 6 respectively. Next calculate TD the total
N difference matrix between all estimates as

¥
by
e

% TD: -(Ta)+(T9) 34

where each operation is performed element wise. Ty will be an nm by nm

- difference matrix normalized by ‘_/r;+r92 . To find the clusters find the matrix
‘: formed by setting all elements of TD>1 to zero and all others to 1. Now each row
¥ (or column} contains a | for each estimate that is clustered with the indexing
.‘ estimate. In general there should be only one cluster if there is a match; however,
E the above procedure may also produce severai subclusters of the larger cluster. in
S order to pick the best cluster, the number of terms and the strength of the
o, 28
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individual matches between each feature vector should be ccnsidered. The foilowing

decision scheme is chosen to select the final ciuster.

{) Total the number of members in each cluster, call this number GCNT

2) Multiply each group member by the weighting factor

" { - é d, (m,n)
i=1
:: this indicates the degree of match between each feature vector in the
'E cluster. Sum this number and call it GSUM
v::: 3) Add the value rWO(GCNT - 1) to GSUM and find the average value of this
total for each group; GAVG = ( t_¢(GCNT - 1) + GSUM)/GONT
,":: | 4) Pick the cluster for which GAVG is maximum.
E::' To get the final estimates of « and 6, find the average of the individual &i and éi for
‘?; the chosen cluster. If there is nc cluster the above procedure reduces to picking the
;:- individual feature vector with the highest degree of match.
‘.'EEZ Unlike a and 8 the translation of a whole shape is not equivalent to the same

translation in each of its feature vectors (recall that translation is not a linear

'y operation). Therefore, scale and rotation information is required to estimate Z, {the
X translation vector between the centroid of the dictionary shape and the centroid of

the problem shape which have been matched). To estimate z, the matched shape

-
,;Z:; dictionary is scaled and rotated with respect to its centroid using the {inal estimates
A
oty
N obtained for a and 6. The rotated and scaled versions of the dictionary coordinates
N are calculated as
':; dk —_ A -~ dk —_ -’ dk —
+ L - i -
. ms T % ta _cos(e) (X %) +sin®) (y-y )
5
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. ~ d .~ d 1
Kp = YkM(_COS(G) (r:y-?k)-sin(e)(kx~?, | 38

m K

where m = { to M, and (x, , y, ) is the centroid of the dictionary. Note if the
dictionary 1s prepared so that its centroid is (0,0 then (35) can be reduced to

.

R

E :l:x’ = (; [cos(é) (f:x) + sin(é) (c::y )}

:l:y’ - [cos(é) ( f:y) - sin(@) (f:x ) J} %

N

: Since translations from the same shape should be equal (except for certain cases of
‘:: symmetry) a clustering of translation parameters, similar to that just described for
' a and 6, is expected for the estimates of x, and y,. Therefore, an additioral step can
I be implemented to further reduce the possibility of false alarms and large errors in
g'i the estimate of z,.

¢ Consider the final cluster from which a and 6 were obtained. Calculate the values
. & ad .y, the translation coordinates between each matched feature vector from the
.: cluster, where

! L6 t

-7 S -

g L6

.; Nt~ ? ii i 37
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where
C_ P o
X, = X. - X
cl c1 1
d
S
di T i K 38
with

c = the index over the cluster obtained from the estimates of « and 9
{c=1toC),
i = the index on the individual components of each feature vector from the
cluster,
x'= the x coordinate from the transformed dictionary page,
y’= the y coordinate from the transformed dictionary page.
Next form the two vectors | (X e Koo oY ]T and | (Y s Gy s Ay IT
from the values obtained from (37). Then calculate the two circulant difference

matrices Tx and Ty normalized by t and T, ( the maximum allowable intra-cluster

distance for x, and y, ) as

X, - X X, " X
T = ot X, = X 1 Ch 39
X < - % ct ct < -y
o4 t% c4hch |
T
X
o= [T " T ch 40
y 3 ot M i
o ch T ch
T
y

Next calculate TZ the total normalized transiation difference, as

31
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A
TZ:\_/(T)HTy) 4! .”.;
v
where each operation is performed element wise. T_ can be checked for clustering in .:I‘
the same manner used previously with (; and 9 In gereral all elements of TZ are .,‘
expected to cluster; however, there is a small probability ( dependent on the values 2
of t, and ry) that they will not. In this case, the non-clustering terms are discarded .;:
and the final estimates of x, and y, are obtained by averaging over the remaining
cluster elements. o
.
V RESULTS 3
".-.
A 3-dimensional shape dictionary was constructed. It consisted of twe airplanes, ,:
an F-15 and an F-4. A valwe of 15 degrees was chosen for 6, . and a total of 20 |.
views generated for each plane. The range of views covered +30 degrees pitch and 0 :i:
to -45 degrees roll. The boundary curves were obtained by thresholding a 512X512 ::
pixel image of each view to obtain a binary representation. A contour was then :‘ y
obtained from tnis image and processed for critical points. The contours obtained for :
each plane are shown in figure 14. :
A value of 13 was chosen for the window length of the averaging filter used in the ::
first stage of the critical point extraction routine. The values used for the .f
segmenting thresholds were t,=-.3 and 7,=-1.2. The values of the thresholds used "
to determine the confidence numbers were t3=-2.4 and 1,=-4.8 respectively. This §
corresponds to a design range of .5 to 1 for the scale factor a. A bias value of 7, E

equal to .48 was calculated based on a maximum deviation due to grid rotation of
(\_/2-1)*r2. A maximum normalized distance of rm:.04 is allowed between feature

vector components. Maximum cluster distances of t_=*.075 and 14=%5 degrees were

- ar



selected for the scale, rotation cluster pertion of the algorithm. Transiation
parameter clustering was implemented with a maximum scattering of *10 pixels for
both T and ry. A cluster weight of T, was chosen for the cluster decisicn
procedure.

The problem texts were then extracted from the scene shown in figure 15. This
scene contains three planes, an F15, an F-4 and a HARRIER, placed at arbitrary
orientations within the range covered by the shape dictionary. The HARRIER was
used as a control to check the algorithm’s ability to discriminate non-dictionary
shapes from dictionary shapes. The video camera has been moved away from the
planes to provide a scale change and adverse lighting has been employed to add
uncertainty in the determination of the planes’ boundaries. The three problem texts

shown in figure 16 were extracted from the scene using binary thresholding. They

were then matched with the shape dictionary. From figure 16 it can be seen hat
only partial shape information is recovered for each plane ( the shadows are
interpretted as part of the object information ).

Each problem text was cross-matched with the two objects in the shape dictionary.
The results of the match are demonstrated in figure 17. The white contours
superimposed over the original scene indicate the view from the dictionary matched
to each problem text with its estimated scale, rotation and translation parameters.
The first problem text is identified as an F-15 at -15 degrees pitch and -135 degrees
roll. The second problem text was identified as an F-4 at 0 degrees pitch and -30
degrees roll. The third problem text was not recognized as a member of the shape

dictionary. The procedure generated no false alarms.

V1 DISCUSSION

If additional identification power is required a second stage can be implememted to

a3 s




eliminate portions of any composite shape problem text as they are identified, ' v
thereby reducing the composite problem text to a truncated problem text which has a
higher recognition rate. Also false alarm rates can be significantly reduced by
implementing a similar procedure to compare boundary points once a possible match
has been indicated. It is also possible to extend the feature set chosen for each
dictionary shape thus reducing the probability of a miss. Unfortunately this results in !
an increase in match times required for each dictionary shape. This increase in time 9
will be linearly related to the increase in the feature vector set. Miss rates )
may also be reduced by relaxing the maximum distance allowed between feature :2
vector components, This is recommended only if the previously discussed ,'

verification procedure is implememted because relaxation also increases the rate of ¢ \

false alarms. ]
If a sequence of dynamic images ( scenes with cbjects in motion ) is being
analyzed, it is believed that the overall recognition rates will improve over the by

entire course of the sequence. This is because the amount of occlusion will not
remain constant during the entire sequence, thus revealing more object information

in the totality of the sequence than in any one frame. l

VII CONCLUSIONS \

The definition of critical points using the concavity tree structure and the
corresponding identification algorithm described in this paper have been shown to
offer the following features and advantages when the identification of 3-dimensional
shapes in 2-dimensional scenes is considered. The theoretical definition of critical

points using the concavity tree structure of a shape is invariant to transforms of

scale, rotation and translation within the 2-dimensiomal scene. In the actual \
implementation, invariance to the latter two transforms is maintained and 3
34
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invariance over a specific range of scale factors is obtained. The critical point
definition is reasonably stable under conditions of shape occlusion and partial
A framing, such that partial shape information is usually sufficient to identify a shape.
The algorithm requires only one pass per concavity tree branch to extract the
critical points. These critical points are the same regardless of starting point. The
critical points are concentrated in areas of high shape dynamics, i. e. the highest
s areas of shape quantification occur in those regions of the shape of highest
- qualitative interest. The algorithm is considered robust in the sense that , the more
" complex a shape becomes the higher the probability of identifying it in a scene. This
ot is due to the fact that more critical points are allocated to the more complex
" shapes. The algorithm is flexible in the sense that it can be modified to accomedate
restrictions on memory or computation. also as a byproduct of the matching
M procedure, estimates of the scale, rotation and translation parameters of an

N identified shape are automatically generated.
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APPENDIX

The proof of the theorem in section III follows. It has already teen estabiished
that the operation ¥(e) is a point set relationship between a shape (subshape) and its
concavity tree, or to be more exact a shape (subshape) and its convex hull. Therefore
it is sufficient to show that this relationship is maintained under the three
transformations. The convex hull S° of a shape S is defined mathematically as the

set of all points r such that
r=Ap+(I-Ng; O<A<t al

where p,q are points in S. This includes all points on all line segments joining every

pair of points in S. For points r, p, g, in RZ {a1) may be rewritten as
(rx,ry) =A (px,p),) + (1N (qx,q),) , aZ

where r =Ap H(1-Ag ; r‘yz)\py+(i-)\)qy; 0<AC!. The effect of each transformation is
to map individual points of S into S’, therefore the definition of s is simply the
above definition with p,q replaced by p’,q’. Consider first the convex hull of a shape

under the transformation Sel*): It becomes the set of all points r’ such that

r=Ap +(I-Aq; IOXQ!
or
(rx’,ry’) = lap,, apy) + (-0 (aq aqy) ) al
where
rx’:}\apx+(1-/\)aqx;

Y
the terms in (a4) can be rearranged so that

T=A + (1-A . 4
r apy ( )quy a
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ry’: [)\px+ (L-N) qX] sinf + [)\py+ (1-)) qy] cosf ad
and finally,
r":Re{}\p+(1->\)q}. al0
37

r=alAp +(-Ng ]

X
r’=aAp + (14 a9
y al Py (1-A) qy ]
which is equivalent to the transformation S (s} on the whole line segment, or
r’:Sa{Xp+l1->\)q}. ab
Taken over the entire set S, this can be rewritten as
Ch(Sa(S)):Sq(Ch(S)), al

which can be interpretted as "the convex hull of the scaled shape S is equal to the
scaled convex hull of S. A similar argument can be used for the transformations
Re(c) and T(e) with (a4), (a5) and (ab) replaced by (a8), (a%), (al0) and {all),

(al2), (a13) for Rg(e) and T(s) respectively. Specifically,

(r, ry’ )=Alp, cosf - Py sinb , P, sin6 + Py cosf ) +

(1-A) (g, cosb - c sinf , q, sin + 9, cos6 )
where,

rx’ =A (p)< cosf - py sing ) + (1-A) (q cosO - 9, sinf J ;

--~—-ry—’ :-A—(px cos8-+ py sinf-) (4 ~)\)—(-q)E siné - qy cosf .} a8

which can be rewritten as,

r, =[Ap, +(1-N g ]cos6 - [A Py + (1-N) qy] sinf ;




L b

. oas t PN g gp

- -

Similarly,

mhryd = A eyt apy oy A g h g )
where,
r, =Alp tx )+ (1A (g +x )3
ry’:)\(py+yt)+(1-x)(qy+Yt); all

which can be rewritten as,

]

r.xa:)\px+)\xt+qx-}\qx+><t->\><t [Apx+(1->\)qx]+x,

L

I

r’:)\py+)\yt+qy-)\qy+yt+)\yt

Ag + [1-A +
y ( 9 ( )qy] Yy

al2
and finally, ‘

r’:T()\p+(i-)\)q}. al3

\ J

These arguments can be summed up, as in (a7) for the scaling transform, by

(al4) and (al95) for the rotation and translation transforms respectively.

CAT(SN=T(CSN. al5

It has been shown that the relationship between the convex hull of a shape with the
shape itself is preserved under the defined transformations. The only other
operations involved with the determination of C from S are intersections. However,
since Sa(.)’ Re(O) and T(e) are restricted to be one-to-one, all intersections are
preserved by the nature of the transforms, i.e., any two points which coincide in the
image of the transforms will also coincide in the preimage of transforms. Therefore

the relationships in (24) are true.
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PART TWO

. A Minimax Risk Quantizer for Noisy Sources

I. Introduction

Classical quantizer design theory has focused on
determining the optimal quantization mapping which
minimizes the expected value of a distortion measure
between the quantizer input and output. These techniques
usually requirce a priori information concerning the
statistics (probability distribution, lst and 2nd moments,
etc.) of the signal to be quantized. The need for
quantizing sources with incomplete knowledge of the source
statistics is well recognized, and a number of efforts
[1][6][12] have been made to address the problem. Bath
and Vandelinde [1] have presented the fundamental
development for minimax quantization of signals with
distributions from a unimodal generalized moment

constrained class. The minimax quantizer i1s said to be
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*f : that quantizer with a maximum distortion between t{he
quantizer i1nput and output less than that of any other

o quantizer for the given distribution class.

Ay Minimum risk quantization theory (4] has been applied

to the problem of quantizing a source signal corrupted by

K)
ﬁi independent additive noise (figure 1) and has shown the
W
(%
%; promise of using risk theory to determine an optimal
b 2
quantizalion scheme. This approach also uses considerable
K
iy . _ . .
ﬁa a priori information concerning the source and noise. The
L]
Al
L}
ﬂ' general risk theory analysis however, allows the use of a
M
number of estimation schemes to solve the corruptive noise
i
N
ﬁ. problem. Minimax estimation can be applied to the
A
ﬁ' - quantization problem to produce a quantizer which
guarantees a maximum risk less than that of any other
U [
j% quantizer. In section II the general quantization problem
k)
( P . . . « a
;ﬁ is stated. Section III follows with a description of the
risk theory approach to quantization. Section IV develops
T
L)
o L. . . . L, .
¢' the minimax risk quantization theory for an additive noise
¢
)
&| corrupted source with parallels drawn to the foundation
;,‘i
provided by Bath and VandeLinde. Section V describes some
o
? simulation results followed by conclusions.
¢/
L]
‘f'
X
4 I11. General Quantization
"
)
. J
iy
jk Most of the prior work in quantizer design
ad
-
."l
W
‘s
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characlterize the quantizer mapping as an estimator of the
quant izer input. A deciston is made regarding within
which region of the domain an input sample falls, and a
representative value 1s determined which best estimates
elements of that region. Denote the quantizer domain
space X, and the finite range space Y. Then the quantizer
mapping, v = q(x), produces v € Y, Vx € X. The design cf
a quantizer consists of completely specifying q{(x) and Y,
when X is known. The mapping is surjective since every
element in ¥ is a possible outcome of q(x), Vx € X. Since
Y is finite, call N the number of elements in Y. Define

an index set on the elements of Y so that I={Y1,"',YN}.
The domain can be partitioned into N disjoint sets,

¥, s{x 1 a(x) = y;,, x € X}, i=1,--+,N, with {J ¥, = X.
1

As mentioned above, it is common practice to require
thut a representative value y estimate the sample x. To
this end, ¥ and q(x) are defined so that y closely

approximates x. This will require that each subset )& be

a connected subset with Y € X The use of risk theory

1’
for quantization analysis will describe the quantization
process in such a fashion that the membership requirement,

y; € X may no longer be applicable and will not be

1‘!

required.
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Itt. Risk Quantization

The problem of quantizing noisy sources, as
illustrated in figure 1, requires new techniques to

determine optimal quantization schemes. Here an

independent identically distributed (i.i.d.) information

source has been corrupted by an i.i.d. additive noise
source, and it is required to quantize the resulting noisy
signal. The classical quantizer design procedure yields

the quantizer mapping which produces range elements that

best estimate the noisy input samples -~ which may produce
unsatisfactory results. The problem is caused by the
perception of the quantizer as an input estimator. By

changing this perception, it will be shown thatl the
problem may be solved using risk and estimation theory.
#1sk quantization is based upon the state space
representation of figure 2. Here the source, 6, is mapped
through some probabilistic transition mechanism,
px|e(x|9), from the parameter space ® to an observation
space X. The quantizer mapping q(x) is the decision rule
which determines a representative element y from the
decision space Y which estimates the source, 6, based upon
the observation x € X. Since the quantizer maps onto the
decision space ¥, and the quantizer range must consist of

a finite number of elements, the elements of Y may be

65

.-
e b P A T W T R AT L N e N > . W
n s dan T e a L S R O AN (N (L P P R A A, N N A T R T




IR b N LR 2O

LA X '8

indexed so that Vi i=1l,...N, and U y; = Y as ovefore.
i .

Altbhough the observation x is an element of the set X[, Y

representing the observation set will not be required to
be an element of that set. This is because the
probabilistic transition (due to the noise) might corrupt
the original signal source such that the best estimate

does not lie within the observation set Xi' The concept

of quantization as estimation is the key to risk
quantization, with the specific requirement of source
estimation rather than input estimation. This will
provide the necessary quantization schemes for noise
corrupted systems, while incorporating the classical
quantizer definition of input estimation for the noiseless
case.

To determine an estimation rule, some form of quality
measure is required. This may be given by a cost function
C(O9,y) over ® X ¥ which represents the cost associated
with estimating the parameter 6 by decision v, based on
observation x, V 06 € 8, x € X, y € Y. The cost 1is
generally expressed as a function of the difference
between the parameter and its estimate,

C(e,y) = C(e = 6 - vy) (1)
With the specified cost function, the risk is defined as

the expected value of the cost:
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,
‘
R = E[C(8, y=q(x))] (2,

Estimation theory techniques may be employed to determine B
;

the quantization mapping q{x) which minimizes the risk :

function. !
[V, Minimax Hisk Quantization R,
The risk theory approach has been applied to the ;
additive noise problem depicted in figure 1 for well Y
defined a8 priori source and noise distributions to obtain .

A minimum risk quantization solution [4]. It is shown in
t4] that the risk approach is a viable one to quantizer a
desi1gn for such systems, and is equivalent to the #
classical result for noiseless systems. 3
It 1s often likely, however, that the quantizer &
drs1gn must be based on incomplete knowledge of the signal t
statistics. For example, a problem may arise when a o
quanti1zer is needed for a source where the statistics are

fairly well known, but various unknown noise distributions -
can corrupt the source signal. Likewise, the noisy ;
characteristics of a sensor may be well defined, but the &
exact probability distribution of the source signal to be :
x

quantized with the sensor unknown. These types of J
!
problems suggest the use of minimax estimation to ?
2
ry
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& determine the quantization mapping. Minimax estimation

B . seeks to minimize the maximum possible distortion by the

O

Eg estimator, and is directly applicable to the risk approach

e

’ﬁ to quantizer design.

E This is demonstrated by examining the problem of an

% additive noise source using risk theory and minimax

¢

gl estimation. Specifically, the source statistics and

$_ probability distribution will be assumed known a priori.

:& The exact distribution of the noise, however, will be

:ESE assumed to be unknown, but belonging to a generalized

* moment constrained class of distributions, C. A risk

N

gs analysis of the system will be applied using minimax

§:: estimation to produce a minimax risk quantization scheme

;' for the system. Further, it will be shown that the

x; analysis is reversible and may be applied to the additive

% noise problem when the noise probability distribution is
well defined, but the knowledge of the source distribution

24 is incomplete.

4 A minimax estimator t* is one which guarantees a

K3 maximum risk no greater than that for any other

e

gg estimator [11). That is,

¢

'.: sup R 4(8) < sup R (6) (3)

ig Likewise, the minimax quantizer will be defined as one

L)

g; . which guarantees the minimum maximal risk for all

;é quantizers. Minimax quantization theory has been

g
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developed for the classical quantizer problem of noiseless
sources by Bath and Vandelinde [l}. The approach
developed will be applied in the risk theory development

of an appropriate quantizer for the additive noise

problem.
Known Source Distribution

Consider the sequence of independent, identically

distributed random variables {9k}, from the known
cumulative probability distribution function (c.p.d.f) Fg.

The source sequence has been corrupted by a noise sequence

{Nk}, with unknown c.p.d.f.s {FNf}’ to produce the

observation sequence {Xk} to the quantizer.

The sequence {FN%}' while unspecified, are

constrained to belong to the set C of all possible
c.p.d.f.s with whatever a8 priori information of the noise
characteristics is available. The set to be considered
here is the set of c.p.d.f.s belonging to the generalized
moment constrained class. These distributions are
required to have a generalized moment less than or equal
to some finite constant. This may be viewed as a

restriction of the noise power to be finite.
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The minimax risk is defined as:

R* = min  max R(q,Fg,F (4)
qEQN F/VEC

where R(q,Fa,FN) is the risk for an N-level quantizer q

from the set of all possible N-level quantizers QN and the

c.p.d.f.s Fe, FN‘ described above. The minimax risk

quantizer, q*, is that quantizer which provides the

minimax risk R*. The properties of the minimax risk

: quantizer, analogous to the minimax quantizer, are:

b 3
1) VvFec, 3 R x> R

where R* is the absolute maximal risk for
quantizer q*.

) 4

2) 3 q € Qy, 9 # q* 3 max R(q,F < R

F,)
o' N
where q* guarantees a maximum risk no

greater than the maximum risk
of any other quantizer q € QN.

The quantizer mapping, q(x) € QN’ maps an x € Xj to a
quantizer level y; € Y, i=1,-<,N. For the scalar
quantizer, Xi = [Xj’xj+1)' where Xy T T XNyl T and

the quantizer thresholds comprise the set {xi},

I=1, ««« / N+1, Note that the set of quantizers QN does not
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require the quantizer level Y be an element of X

The risk for any particular quantizer mapping may be
defined as:
R(a,Fg,Fp) = [ [ cle,a(x) dFy pgle) do (5)
8 N
where the inner inlegral is a Lebesgue-Stieltjes integral

over the sequence of noise c.p.d.f.s (FNk}. The order of
integration is changed to yield:
R(a,Fg,Fp) = [ [ ClO,a(x) pgo) do dF (6)
N ®
The purpose of the interchange is to facilitate the
minimax operation procedure that occurs later.

It is apparent that if the system is noiseless, the
risk function is precisely that of the classical quantizer
distortion function. The minimax quantizer then is the
sume as the results of Max [9] since the source
distribution is assumed known.

¥ = inf J' C(8,a(x)) py(0) do, © =
19 e

= R* = inf J' C(9,q(8)) pgle) de (7)
1 6

The cost function used is restricted to some bounded
distortion measure, d(06,q(x)), between the source and

quantizer output:
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L]
d(e,q(x)), d{(e,q(x)) < 1L

C(o,q(x)) = (8 E
L, d(e,q(x)) > L. i
The distortion measure d(6,9(x)) is required to be even, .
continuous, monotonic strictly increasing in |6-q(x)]|, and J

zero for perfect estimation. The bound on the cost
implies no additional penalty for a distortion larger than :
l.
the limit, L. ﬁ

The generalized moment constraint is given by some

function p(n) satisfying the same conditions as those for ;
b
the distortion function such that: »
N
[ p(m) daF(m) < c. (9) .:
N W
- .
The constraint function p(n) simply implies that the noise ;
s
signal power is bounded. The distortion and constraint 3
[y
.
functions considered here are: ﬁ
Ut
'
n "
d(e,q(x))=]6-q(x) | :
(10) ;
¥
p(m)=|n|™ m2n21, $
Y

The conditions of bounded cost and those imposed on
.‘
d(9,q(x)) and p(n) are required for the Lagrange )
minimization of the next section. W
N

The problem then, is to determine the minimax risk

7]
)
quantizer q* for the worst case c.p.d.f., F;n which ‘ﬁ
' y
ﬂ
achieves: \
73 3
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inf sup R(q,F4,F,) = R(q ,F, o, F3). (1)
€C e N e N

a€Qy Fy

The set QN is the sel of all symmetric quantizers where
the levels are symmetric about the source mean, and the
thresholds are symmetric about the observation mean. The
set C is the set of c.p.d.f.s belonging to the generalized
moment class, and R is the risk function using the cost
function C(6,q(x)). To determine the minimax risk
quantizer, it first necessary to find the maximum risk due

to a particular quantizer mapping q € QN' then determine

which quantizer provides the minimum of all of the maximum

risks.

It has been shown [1] that the set C is a weak*
compact subset of a normed Banach vector space (N.B.V.) of
normalized functions of bounded variation. Also with any

linear functional on N.B.V.[0,«] (such as R(q,Fe,FN)),
which is weak* continuous in FN‘ then:

Vq €@y, 3 F’;, e ¢, ®R¥(q) 3:
®* (q) R(q,FoF%) R(q,Fa, Fy) (12
qQ) = R(q, = max qQ,Fg,,
o' N F yec IR

Furthermore, a method for determining a minimax quantizer

via a constrained minimization in a Lagrange multliplier

space (R?) through the use of the Lagrange duality theoren

has been developed [1]. The technique will be
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paraphrased here to determine a minimax risk quantizer.

’

Let C = .{'FN € N.B.V.[0,>]} where Fy exhibits the

following properties:

1) FN is nonnegative, monotonically nondecreasing,

bDefine the convex set C = { FN € N.B.V.[0,~] }, where FN
satisfies 1). Now define a convex functional
G: N.B.V.[0,»] — RZ,
[ aFry -1
f p dFN - c
which represents the necessary constraints for Fy to be a

c.p.d.f. and have a generalized moment constraint. This

implies:
C = | FN € C: G(FN) <0}

By the Lagrange duality theorem [8), an expression
for the maximum risk due to the quantization mapping q(x)

mav be found:
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R¥(q) = sup R(a,Fg,Fp

FNEC
sup F(q,Fg,FN> = min sup { R(q,Fe,FN
5 —
FNEC xl,xz_o FNEC

(13)

-, ([ ary =) = ay ([ podaFy - <) }

where the inner maximization is achieved for some worst

case distribution, F; € C, and the outer minimization by
Xt and Xz. If the cost weighting function is bounded,

R*(q) is finite and equation (6) can be used to replace

R(q.Fe,FN) of equation (13) to yield:

x ~ ) )
R"(q) —"T'”"‘zzo [CA + A c) + B(X A )] (1)

B(A‘,Aa) = max I 1(n) dFN(n) (15)
FNEC N
1(m = [C(8 - a(x) pg(0) do - A - A pim (16)
e

The minimization of equation (14) need only be

considered when B(X‘,Xz) is finite,. This will only occur

when I(n) is nonpositive, If I(n) is positive at any

point, a sequence of noise random variables {Nk} with

c.p.d.f.s {F } could occur such that as k gets large, the
N/‘_



mmﬂm" ladiadiadiodiadiad'y,

[

) integration tends to infinity,. .
1f 1(n) is required to be nonpositive, then the ?
maximization of equation (15) over all possible FN € C -
Ly

implies: v

B(A ,A,) = 0. (17)

_ {
Since F, % constant is an element of C for EN 1t ‘:
k !

follows that if I(n) is made nonpositive, the maximum -
possible integration of equation (15) is zero. .
n

The minimax risk for any quantizer qEQN and the %,

specified conditions then reduces to:

R*(q) = min (X + X_c) (18)
A A 20 1 2 ”
1' 2 r
I(n)<0
-
Figures 3 through 6 are a series of curves which .
depict the function I1(n) for various quantizers with :
pPg(®) ~ N(0,1), and distortion bounds of L = 0.25, 0.75. 4
-
These curves show the effects of the distortion bound on h‘
»
the function, and that it is quantizer dependent. Note :f
F
the discontinuity near the quantizer threshold.
The minimax risk quantizer q* then, is that quantizer :,
which produces: !
o ¥
X _ . . o «
R =  min min (X1+ lat‘ (19 +
>
quN xx’xz‘o
I(n)<0 v
't
This result is similar to that obtained for minimax h¢
o,
P
;’
.\.
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quantizalion by Bath and Vandelinde for the gencralized
moment constrained class of quantizer input distributijions.
It differs primarily in the function 1{(n) which
incorporates the cost of estimating the source by the
quantization mapping and the a priori knowledge of the

clean source probability distribution function, Fe(e).

The minimization of equation (14) over all
nonnegative Xl, Xz' and nonpositive I(n) implies the

maximum of I(n) 1is zero. As can be seen in equation

{l16), the role played by X1 in I(n) is merely that of a
bias term. This implies that the minimization of equation

(14) can be determined by solving:

kf(kz) = max [IC(G,q(x)) pPg(8) dé - A _p(n) (20)
)

and minimizing over all possible Az 2 0. Maximization of
I(n) with respect to ka and At(kz) for a specific
quantizer q € QN will then yield the minimum Xa and the

requisite Al for max I(n) = O.
>
A s 2,20

Known Noise Nistribution

The minimax risk thecry is easily modified for the

converse problem. That is, the prblem considered thus far
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is that of quantizing an i.i.d. source, with known
probability distribution, corrupted by a sequence of
independent additive noise random variables each of
uncertain distribution. If the noise sequence is i.1.d.

with known c.p.d.f. FN‘ but the source sequence (Gk} is

only known to be distributed with the c.p.d.f. sequence

(FOA) from the set C, then the risk may be written:

R(q,Fg,Fp) = I I C(8,q(x)) pypln) dn dFgy (21
e N

The minimax risk quantizer development for this
problem parallels the development for the previous case.

A similar solution is described as the minimax risk
quantizer q* which yields the minimum maximal risk,

R*(q), where:

R*(q) = min (XN + X_c) (22)
’A 20 1 2
1 2
1(9)<0
and
1(8) = J’cm - a(x)) ppln) dn - A - x_p(e) (23)

N
The same restrictions apply to the distortion and
constraint functions, d{(8,q(x)) and p(8) as before.

Likewise,
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(Azﬁ Somax [ f C(6,q(x)) pN(n) dn - sz(e)] (24)
N

and the minimax risk quantizer q* is specified by a
procedure analogous to that of the previous section.

Figures 7 chrough 10 show the effects due to the
constraint on the noise power and the distortion bound L
on the function I(96). These appear roughly similar to
I(s) in {1], differing through the knowledge of the noise
for 1(6).

Note that in the noiseless case, this risk
definition coincides precisely with the distortion
function of an unknown inpul sequence used by Bath and
VandeLinde. The minimax risk quantizer then is identical
to the minimax quantizer developed there for the classical

quantizer distortion measure.

V. Results and Conclusions

The minimax risk quantizer determination procedure,
is described by the following algorithm. No attempt has

been made to optimize the computation procedure.

1) Select Al 2 0.
2} Delermine the optimal A for the specified
80
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3) Repeal step 2) over all Ao 2 0 to determine
the minimum of (A}(X,) + A, c). This is the
maximum risk for the quantizer q: R*(q).

4) Repeat steps 1)-3) over all quantizers

q € QN to determine the minimum of the

maximum risks: r* = min R*(q).
q EQN

5) The minimax risk quantizer is that
quantizer q* which yields the minimax risk:

®*(¢*) = r*.

It appears from the plots of I(n) that the areas of
maxima occur at or within a 6 - neighbrnrhood of the
quantizer thresholds. A simulation has been performed
based on this observation with the results appearing in
tables 1 and 2. These results were determined by sampling
I(n) in the region surrounding each threshold. The
quantizer step size was fixed at 0.0l and the accuracy of

the Lagrange minimization is such that the error in the

estimate is at most 1 x 1077/. The minimax risk quantizer
with specific quantizer thresholds were found, and the
minimum of these selected as the minimax risk quantizer.

Comparisons of the minimax risk quantizers to the
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Max-Lloyd and minimum risk quantizers (G.S.+G.N.) are

shown al Lhe bottom of tables 1 and 2. The mean square

power constraint, ¢, is fixed such that for the Gaussian

noise case, the Signal-to-Noise Ratio (SNR) is 8 dB. This )
value is shown in table 1. At 8 dB, the thresholds of all

three are nearly identical, with the levels for the i
minimum risk quantizer inside (closer to the mean) those
of the Max-Lloyd quantizer, and the minimax risk quantizer
levels just slightly inside those of the minimum risk
quantizer. The constraint ¢ is fixed for table 2 so that
for the Gaussian noise case, the SNR is 4 dB. At 4 dB,
the outer threshold of the minimax risk quantizer has
migrated well outside of the other two quantizers, which
may be from the Max-Lloyd and minimum risk quantizers
assumption of Gaussian densities, while the minimax risk
quantizer only considers constrained noise power. The L
levels of the minimax risk quantizer are now between Lhose
of the Max-Lloyd and minimum risk quantizers. This may be '
interpreted from the standpoint of the assumptions also. '
The minimum risk quantizer assumes both the source and >
noise are Gaussian, so it arrives at closely compacted

estimates for the levels. The minimax risk quantizer, on :
the other hand, only assumes the source is Gaussian for 3
this example, and the noise power constrained -- therefore '

Lthe estimates are outside those of the minimum risk '

82 i

RN { { AN h ™ > gl > o 0, 30,04 8 N U R 0 N S W T LS L O e s Rt N T Y
'.\l‘.al’a ¢, l‘,_."'-h (-‘\.5.5.. ‘;,‘l‘ul‘u st t'u" n.t\u L1 'g‘l i‘!‘.‘g@‘g‘,l‘!., LN PO M UM MM T M RN W i FUC U l! »* ‘( HE LA RN M N (M), () "' .V



.0

"

"

. 0

: quantizer (for this example). The minimax risk quantizer r
)

compensales for Lhe corrupting influence of the noise, -
{J

]

whereas the Max-Lloyd quantizer does not. For this o
reason, the estimates for the quantizer levels of the .;

minimax risk quantizer are then placed within those of the

Max-I.loyd quantizer. :'
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B TABLE 1

6%, : Minimax Quantizer Determination

[

‘H (N = 4, Squared-Error Cost, Pg ~ N(O,1))
B

o wy=0, L=0.25, SNR=8dB 3 c = 0.1585
A

B X1 Yo "1 Minimax-Risk
R 0.90 0.41 1.23 0.09931

) 0.91 0.41 1.24 0.09854
'y 0.92 0.41 1.24 0.09780
Rl 0.93 0.41 1.24 0.09708

| 0.94 0.41 1.24 0.09638
;5‘ — 0.95 0.42 1.24 0.09571 ——
iﬁ 0.96 0.42 1.28 0.09743
! 0.97 0.42 1.31 0.09921

e 0.98 0.41 1.31 0.09875

4 0.99 0.41 1.31 0.09818
" 1.00 0.41 1.31 0.09762
s 1.01 0.41 1.32 0.09709

R 1.02 0.41 1.32 0.09657

i 1.03 0.41 1.32 0.09606

- 1.04 0.41 1.36 0.09807

B 1.05 0.41 1.39 0.08973

%

n

"t

il.t‘

B Max-Lloyd Minimum Risk* Minimax Risk
W Xi Yi Xi Yi Xi Yi
Y ' 0 0.4874 0 0.4774 0 0.42
3 1.056 1.625 1.056 1.298 0.95 1.24
3 *Minimum Risk for Gaussian Sources.
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. TABLE 2 ’
{4
Minimax Quantizer Determination
(N = 4, Squared-Error Cost, pgy ~ N(O, 1))
.
my =0, L =0.25, SNR = 4dB 3 c = 0.3983 .
0
Y1 Y0 ] Minimax-Risk ;
1.27 0.41 1.51 0.12232 .
1.28 0.41 1.53 0.12372 4
1.29 0.41 1.56 0.12500 .
1.30 0.41 1.56 0.12447 3
1.31 0.41 1.56 0.12395
1.32 0.41 1.57 0.12343 N
1.33 0.41 1.57 0.12294 i
1.34 0.41 1.57 0.12254 :
—— 1.35 0.41 1.57 0.12198 &e—— k
1.36 0.41 1.58 0.12348 :
1.37 0.41 1.60 0.12492
1.38 0.41 1.60 0.12450 ;
1.39 0.41 1.60 0.12408 ':
1.40 0.41 1.60 0.12367 9
1.41 0.41 1.61 0.12326 v
P
1
M
Max-Lloyd Minimum Risk* Minimax Risk %
Xi Yi X3 Yi Xi Yi \
0 0.5354 0 0.3830 0 0.41 "
1.160 1.785 1.160 1.277 1.35 1.57 M
¢
3
X, . . . W
Minimum Risk for Gaussian Sources. N
ﬁ
N
::,
(
Q
\
Y
ht
0
)
)
]
,
86 \
‘™A
]

. : . NN L LS Y AR T Py A s o M o I -
DAL DRI IR & IREA Y SR 1L L L L DX O 7R T e € e C ™ GO S P AT



Additive Noise Problem

Figure 1
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Figure 2
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Figure 4
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